Von dem Buch Physics of Plastics: Processing, Properties and Materials Engineering haben wir 4 gleiche oder sehr ähnliche Ausgaben identifiziert!

Falls Sie nur an einem bestimmten Exempar interessiert sind, können Sie aus der folgenden Liste jenes wählen, an dem Sie interessiert sind:

Physics of Plastics: Processing, Properties and Materials Engineering100%: Arthur William Birley, Barry Haworth, Jim Batchelor: Physics of Plastics: Processing, Properties and Materials Engineering (ISBN: 9783446162747) 1992, in Deutsch, Band: 3.
Nur diese Ausgabe anzeigen…
100%: Birley, Arthur W (Editor), and Batchelor, Jim (Editor), and Haworth, Barry (Editor): Physics of Plastics: Processing, Properties Materials Engineering (Hanser Publishers) (ISBN: 9780195209181) 1992, in Englisch, Taschenbuch.
Nur diese Ausgabe anzeigen…
100%: Birley, Arthur W (Editor), and Batchelor, Jim (Editor), and Haworth, Barry (Editor): Physics of Plastics: Processing, Properties Materials Engineering (ISBN: 9780195207828) 1992, in Englisch, Broschiert.
Nur diese Ausgabe anzeigen…
Physics of Plastics: Processing, Properties and Materials Engineering87%: Arthur William Birley, Barry Haworth, Jim Batchelor: Physics of Plastics: Processing, Properties and Materials Engineering (ISBN: 9783446150980) 1992, Erstausgabe, in Englisch, Broschiert.
Nur diese Ausgabe anzeigen…

Physics of Plastics: Processing, Properties and Materials Engineering
15 Angebote vergleichen

Preise20132014201520162017
Schnitt 80,66 69,80 92,89 61,43 60,69
Nachfrage
Bester Preis: 31,06 (vom 14.08.2013)
1
A.W. Birley

Physics of Plastics: Processing, Properties and Materials Engineering (1992)

Lieferung erfolgt aus/von: Vereinigtes Königreich Großbritannien und Nordirland EN HC US

ISBN: 9780195207828 bzw. 0195207823, in Englisch, German Historical Institute London, gebundenes Buch, gebraucht.

219,43
unverbindlich
Lieferung aus: Vereinigtes Königreich Großbritannien und Nordirland, zzgl. Versandkosten, Verandgebiet: EUR.
Von Händler/Antiquariat, Anybook Ltd. Lincoln, [RE:4].
This is an ex-library book and may have the usual library/used-book markings inside. This book has hardback covers. With usual stamps and markings, In fair condition, suitable as a study copy. No dust jacket., 1200grams, ISBN: 0195207823.
2
A.W. Birley

Physics of Plastics: Processing, Properties and Materials Engineering (1992)

Lieferung erfolgt aus/von: Vereinigtes Königreich Großbritannien und Nordirland EN HC

ISBN: 9780195207828 bzw. 0195207823, in Englisch, German Historical Institute London, gebundenes Buch.

209,16 ($ 234,62)¹ + Versand: 11,79 ($ 13,23)¹ = 220,95 ($ 247,85)¹
unverbindlich
Lieferung aus: Vereinigtes Königreich Großbritannien und Nordirland, Versandkosten nach: USA.
Von Händler/Antiquariat, Anybook Ltd.
German Historical Institute London, 1992. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. With usual stamps and markings, In fair condition, suitable as a study copy. No dust jacket. , 1200grams, ISBN:0195207823.
3
Arthur W. Birley, Barry Haworth

Physics of Plastics: Processing, Properties and Materials Engineering (1992)

Lieferung erfolgt aus/von: Vereinigte Staaten von Amerika EN HC US

ISBN: 9780195207828 bzw. 0195207823, in Englisch, Oxford Univ Pr (Sd), gebundenes Buch, gebraucht.

215,00
unverbindlich
Lieferung aus: Vereinigte Staaten von Amerika, zzgl. Versandkosten, Verandgebiet: DOM.
Von Händler/Antiquariat, Owls Books, OH, Toledo, [RE:4].
Normal surface & edge wear. May have writing on cover page or light highlighting/textual notes that does not affect page text. Hardcover.
4
Arthur W. Birley; Jim Batchelor; Barry H

Physics of Plastics: Processing, Properties and Materials Engineering (Hanser Publishers) (1992)

Lieferung erfolgt aus/von: Vereinigte Staaten von Amerika EN PB US

ISBN: 9780195209181 bzw. 0195209184, in Englisch, 552 Seiten, Oxford University Press, Taschenbuch, gebraucht.

22,84 ($ 25,54)¹ + Versand: 3,57 ($ 3,99)¹ = 26,41 ($ 29,53)¹
unverbindlich
Lieferung aus: Vereinigte Staaten von Amerika, Usually ships in 1-2 business days.
Von Händler/Antiquariat, BetterWorldBooksUK.
A detailed knowledge of the physical properties of plastics is essential to understanding and extending their use. This book promotes the relationship between processing parameters and product performance by first examining morphology in terms of texture and orientation. The basic structure of plastics is explained, along with the characterization of both polymer and plastics products. Thermal and melt properties relevant to processing are considered, and the principal shaping methods are outlined, highlighting the large number of variables. The key areas of deformation and fracture are given extensive treatment. Engineers and chemists as well as physicists and technicians in the industry will find this book extremely valuable to their research. Paperback, Label: Oxford University Press, Oxford University Press, Produktgruppe: Book, Publiziert: 1992-05-07, Studio: Oxford University Press, Verkaufsrang: 4763872.
5
Arthur W. Birley, Jim Batchelor, Barry Haworth

Physics of Plastics: Processing, Properties and Materials Engineering

Lieferung erfolgt aus/von: Vereinigtes Königreich Großbritannien und Nordirland EN US

ISBN: 9780195209181 bzw. 0195209184, in Englisch, Oxford University Press, USA, gebraucht.

82,82 ($ 92,61)¹ + Versand: 8,94 ($ 10,00)¹ = 91,76 ($ 102,61)¹
unverbindlich
Lieferung aus: Vereinigtes Königreich Großbritannien und Nordirland, Versandkosten nach: USA.
Von Händler/Antiquariat, Better World Books Ltd.
Oxford University Press, USA. Used - Acceptable. Ships from the UK. Former Library book. Shows definite wear, and perhaps considerable marking on inside. 100% Money Back Guarantee. Your purchase also supports literacy charities.
6
3446162747 - Birley, Arthur W., Barry Haworth and Jim Batchelor: Physics of plastics: processing, properties, materials engineering.
Birley, Arthur W., Barry Haworth and Jim Batchelor

Physics of plastics: processing, properties, materials engineering. (1992)

Lieferung erfolgt aus/von: Deutschland DE US

ISBN: 3446162747 bzw. 9783446162747, Band: 3, in Deutsch, Hanser; Oxford Univ. Press, gebraucht.

Von Händler/Antiquariat, Petra Gros Versandantiquariat, 56068 Koblenz.
Broschiert 528 S. Broschiert Das hier angebotene Buch stammt aus einer teilaufgel.
7
3446162747 - Birley, Arthur W., Barry Haworth and Jim Batchelor: Physics of plastics: processing, properties, materials engineering.
Birley, Arthur W., Barry Haworth and Jim Batchelor

Physics of plastics: processing, properties, materials engineering. (1992)

Lieferung erfolgt aus/von: Deutschland DE US

ISBN: 3446162747 bzw. 9783446162747, in Deutsch, Hanser; Oxford Univ. Press, gebraucht.

62,90 + Versand: 6,55 = 69,45
unverbindlich
Von Händler/Antiquariat, Petra Gros Versandantiquariat, 56068 Koblenz.
Broschiert 528 S. Broschiert Das hier angebotene Buch stammt aus einer teilaufgelösten wissenschaftlichen Bibliothek und trägt die entsprechenden Kennzeichnungen (Rückenschild, Instituts-Stempel...). Buchschnitt und Seitenränder alters-/papierbedingt etwas angebräunt; Einbandkanten leicht bestossen; Der Buchzustand ist ansonsten ordentlich und dem Alter entsprechend gut. Table of Contents Chapter 1 Introduction 1 1.1 The Nature of Plastics 1 1.2 Basic Concepts of Polymer Science 3 1.2.1 Nomenclature 3 1.2.2 Polymers and Polymerization 4 1.2.3 Chain Length, Molecular Weight (MW) and MW Distribution 6 1.2.4 Molecular Structure and Physical Properties 6 1.2.5 The Glass Transition Temperature 8 1.2.6 Crystallinity and Crystalline Melting Point 9 1.2.6.1 Crystalline Superstructure 11 1.2.7 Branched Polymers and Network Structures 12 1.3 The Characterization of Polymers 15 1.3.1 Determination of Chain Structure 15 1.3.1.1 Pyrolysis of Polymers 15 1.3.1.2 Infra-red Spectroscopy 15 1.3.1.3 Nuclear Magnetic Resonance Spectroscopy (NMR) . 16 1.3.2 Determination of Chain Length 16 1.3.3 Chain Length Distribution (Molecular Weight Distribution MWD) 17 1.3.4 Determination of T 19 g 1.3.5 Determination of Crystallinity 19 1.3.6 Melting Temperature and Crystallization Temperature ... 20 1.3.7 Rate of Crystallization 21 1.3.7.1 Heterogeneous Nucleation 22 1.3.8 Polymer Texture 22 1.3.9 Orientation 24 1.4 Product Characterization: Preliminary Comments 25 1.4.1 From Polymer to Plastics Compound 25 1.4.2 Polymer-Polymer Miscibility 27 1.4.3 The Analysis of Plastics Compounds 27 1.4.4 The Effect of Processing on Product Performance 29 1.4.4.1 Processing under Optimum Conditions 29 1.4.4.2 Product Faults arising from Non-optimum Processing 31 1.4.5 Product Characterization and Service Behaviour 32 1.4.6 Products based on Cross-linked Plastics 33 References 34 Chapter 2 Thermal Properties 37 2.1 Introduction 37 2.2 Enthalpy: The Relationship between Heat Energy and Temperature . 38 2.2.1 Supercooling in Semi-Crystalline Plastics 38 2.2.2 Amorphous Plastics: The Effect of T 42 g http://d-nb.info/910463379XIV Table of Contents 2.3 Melting and Crystallization 43 2.3.1 Effect of Molecular Weight on Melting Temperature .... 43 2.3.2 Effect of Branching and Copolymerisation on Melting Point . 43 2.3.3 Effect of Polymer-Polymer Blending on Melting Point ... 44 2.3.4 Effect of Nucleating Agents on Crystallization Temperature . 45 2.3.5 Effect of Cooling Rate on Crystallizing and Fusion Tempera­ tures 46 2.3.6 Effect of Pressure on Melting and Crystallization Temperatures 46 2.3.7 Orientation and Crystallinity 47 2.4 Thermal Conductivity 48 2.4.1 Thermal Diffusivity 48 2.4.2 Effect of Crystallinity on Thermal Conductivity 49 2.4.3 Effect of Fillers on Thermal Conductivity 50 2.4.4 Effect of Orientation on Thermal Conductivity 50 2.4.5 Effect of Pressure on Thermal Conductivity 51 2.4.6 Heating a Plastics Product 51 2.4.7 Cooling a Blow Moulding of Appreciable Thickness .... 51 2.4.8 Liquid Carbon Dioxide as an Internal Coolant 53 2.5 Thermal Expansion and Contraction 55 2.5.1 Factors Affecting Thermal Expansion: Crystallinity .... 55 2.5.2 Factors Affecting Thermal Expansion: Cross-linking .... 56 2.5.3 Factors Affecting Thermal Expansion: Fillers 56 2.5.4 Factors Affecting Thermal Expansion: Orientation 57 References 57 Chapter 3 Melt Flow Properties 59 3.1 Introduction 59 3.2 Fundamental Concepts of Rheology 59 3.3 Geometry of Flow 60 3.3.1 Simple Shear 60 3.3.2 Elongational Flow 61 3.3.3 Bulk Deformation 61 3.4 Rheological Behaviour in Simple Shear 62 3.4.1 Viscous Behaviour in Simple Shear 63 3.5 Viscous Properties of Plastic Melts in Simple Shear 65 3.5.1 General Characteristics 65 3.5.2 Empirical Representation of Experimental Data 66 3.6 Measurement of Shear Properties 68 3.6.1 Cone and Plate 68 3.6.2 Concentric Cylinder 70 3.6.3 Capillary (Extrusion) Viscometer 71 3.6.3.1 Analysis of Experimental Results from Capillary Flow Measurements 73 3.6.3.2 Types of Capillary Viscometer 75 3.7 Factors Affecting Shear Flow 76 3.7.1 Temperature 76 3.7.2 Pressure 77 3.7.3 Effect of Molecular Structure 77 Table of Contents XV 3.8 Elongational Flow 80 3.8.1 Methods of Measurement 80 3.8.2 Types of Elongation Viscometer 81 3.9 Factors Affecting Elongational Viscosity 84 3.9.1 Elongation Rate 84 3.9.2 Molecular Parameters 84 3.9.3 Temperature 85 3.10 Melt Elasticity 86 3.10.1 Stress Relaxation 86 3.10.2 Stress Growth 86 3.10.3 Elastic Recovery 86 3.10.4 Die Swell 87 3.10.5 Melt Fracture 89 References 90 Chapter 4 Processing I - Continuous Methods 93 4.1 Introduction 93 4.1.1 Melting 94 4.1.2 Shaping 94 4.1.3 Shape Stabilization 95 4.2 Extrusion Processes 96 4.2.1 Machine and Material Requirements - An Overview .... 97 4.2.2 Extruder Hardware and Machine Component Functions . . 98 4.2.2.1 Machine Components 98 4.2.2.2 Machine Specification 100 4.2.3 Plastics Flow Analysis in the Screw Extruder 101 4.2.3.1 Single Screw Extrusion 101 4.2.3.2 Twin Screw Extrusion 108 4.2.3.3 Extrusion Dies and Effects of Die Restriction . . . 113 4.2.4 Plastics Materials in Extrusion: Melting, Mixing and Shaping 120 4.2.4.1 Melting Mechanisms 121 4.2.4.2 Mixing Characteristics 122 4.2.4.3 Extrusion Materials and Shaping Variables .... 127 4.2.5 Downstream Extrusion Processing - Cooling, Shape Stabiliza­ tion and Development of Orientation and Microstructure . . 130 4.2.5.1 Heat Transfer During Extrudate Cooling 130 4.2.5.2 Pipe Extrusion 132 4.2.5.3 Profile Extrusion 133 4.2.5.4 Sheet, Flat Film and Coated Laminates 134 4.2.5.5 Wire Covering 134 4.2.5.6 Co-Extrusion and Multi-Layer Products 135 4.2.5.7 Oriented Extrusion Products 135 4.2.6 Some Common Faults and Structural Defects in Extruded Products 137 4.2.6.1 Shaping Phase 137 4.2.6.2 Cooling Phase 140 XVI Table of Contents 4.3 Calendering of Plastics 141 4.3.1 Process Description 141 4.3.2 Polymers, Melt Properties and Calendered Products .... 143 4.3.3 Operation and Analysis of Calenders 144 4.3.3.1 Flow and Pressure Generation at a Calender Nip . 145 4.3.3.2 Influence of Pseudoplasticity 148 4.3.3.3 Roll-Separation Forces and Methods of Compensation 149 4.3.4 Machine and Formulation Variables 150 4.3.5 Some Defects in Calendered Products 153 4.3.5.1 Uneven Thickness Distribution 153 4.3.5.2 Surface Blemishes and Defects 154 4.3.5.3 Post-Fabrication Shrinkage 155 4.4 Pultrusion 156 4.4.1 Description of the Process 156 4.4.2 Analysis of the Process 157 4.4.3 General Comments 158 References 159 Chapter 5 Processing II - Moulding Techniques 163 5.1 Introduction 163 5.2 Injection Moulding 164 5.2.1 Machine Description and Principles of Operation 165 5.2.1.1 The Operating Cycle 165 5.2.1.2 The Functions of Some Machine Components . . . 166 5.2.2 Thermal Requirements for Feedstock Melting 170 5.2.3 Injection Moulds; Factors Affecting Mould Design 172 5.2.3.1 General Functions of Injection Moulds 172 5.2.3.2 Constituent Parts and Types of Mould 173 5.2.3.3 The Mould Feed System (Flow Channels) 175 5.2.3.4 Mould Temperature for Thermoplastics and Thermosets 181 5.2.4 Melt Properties and Injection Mould Filling 181 5.2.4.1 Pressure Drop Calculations for Isothermal Flow . . 182 5.2.4.2 Pressure Drop Calculations for Non-Isothermal Flow 184 5.2.4.3 Computer-Aided Mould Design 187 5.2.5 Moulding Cycle and Machine Control 190 5.2.6 Some Structural Features of Injection Moulded Plastics . . . 194 5.2.6.1 General Microstructure of Semi- Crystalline Plastics 195 5.2.6.2 Orientation 196 5.2.6.3 Residual Stress 198 5.2.6.4 Weld-Line Formation 200 5.2.6.5 Shrinkage and Distortion 201 5.3 Blow Moulding 202 5.3.1 Techniques for Blow Moulding Plastics Products 202 5.3.1.1 Extrusion Blow Moulding (EBM) 203 5.3.1.2 Injection Blow Moulding (IBM) 204 5.3.1.3 Stretch Blow Moulding (SBM) 205 5.3.2 Extrusion Blow Moulding - Materials and Melt Processing . 207 Table of Contents XVII 5.3.3 Some Technological Aspects of Stretch Blow Moulding . . . 212 5.3.4 Blow Moulding and Microstructure 215 5.4 Rotational Moulding 219 5.4.1 Production Techniques and Machine Cycle 219 5.4.2 Material Specification 221 5.4.3 Heating and Melt Flow in Rotational Moulding 222 5.4.3.1 Mould Heating and Melt Plasticisation 222 5.4.3.2 Melt Flow in Rotational Moulds 223 5.4.4 Notes on Microstructure of Rotational Mouldings 223 5.5 Thermoforming Processes 226 5.5.1 Summary of Thermoforming Production Methods 227 5.5.2 Thermoforming Materials and Product Applications .... 229 5.5.3 Analysis of Sheet Heating 230 5.5.4 Stretching and Product Thickness Distribution 232 5.5.5 Orientation and Heat-reversion 235 5.6 Processing Methods for Fibre-Reinforced Plastics 237 5.6.1 Hand-lay, or Contact Moulding 238 5.6.2 Spray Moulding 239 5.6.3 Cold Press Moulding 239 5.6.4 Hot Press Moulding 239 5.6.4.1 Thermoset Moulding Compounds 240 5.6.4.2 Microwave Heating of Sheet Moulding Compound . 241 5.6.5 Resin Transfer Moulding 242 5.6.6 Prepreg Moulding 243 5.6.7 Filament Winding 243 References 244 Chapter 6 Mechanical Properties I - Deformation 251 6.1 Introduction 251 6.2 Deformation of Plastics Materials - Introduction 253 6.3 Temperature and Deformation 256 6.3.1 Role of Primary and Secondary Bonding 256 6.3.2 Transitions and Relaxation Temperatures 256 6.3.3 Effect on Stress-Strain Relationships 258 6.4 Time Dependence and Viscoelasticity in Solid Plastics 260 6.4.1 Deformation and Loading Rate 261 6.4.2 Deformation under Constant Load - Creep 262 6.4.2.1 Creep Deformation - The Voigt-Kelvin Model . . . 262 6.4.2.2 Creep Data - Measurement and Presentation . . . 265 6.4.3 Stress Relaxation (Constant Strain) 268 6.4.3.1 Stress Relaxation - The Maxwell Model 268 6.4.3.2 Stress Relaxation Data - Measurement and Presenta­ tion 270 6.4.4 More Complex Models - The Standard Linear Solid .... 271 6.4.5 Superposition: Successive/Intermittent Loads and Recovery . 272 6.4.6 Dynamic Mechanical Properties 275 6.4.6.1 The Basis of Dynamic Mechanical Testing .... 275 6.4.6.2 Test Techniques 277 XVIII Table of Contents 6.5 Yielding of Plastics 282 6.5.1 Aspects of the Yield Process under Tensile Stress 282 6.5.1.1 Load-Extension Data 282 6.5.1.2 True Stress-Strain Data - The Considere Construction 284 6.5.1.3 Adiabatic Heating During Yield 286 6.5.2 Crazing and Shear Yielding 286 6.5.2.1 Formation and Structure of Crazes 286 6.5.2.2 Toughness Enhancement by Multiple Yielding . . . 289 6.5.3 Yielding in Semi-Crystalline Polymers 290 6.6 Property Enhancement by Orientation, Reinforcement and Foaming 292 6.6.1 Molecular Orientation 292 6.6.2 Heterogeneous Reinforcement 294 6.6.2.1 Composite Materials 294 6.6.2.2 Fibre Reinforcement and Deformation 295 6.6.2.3 Stiffness of Continuous Fibre Reinforced Composites 296 6.6.2.4 Mechanism of Fibre Reinforcement 302 6.6.2.5 Particulate-Reinforced Composites 304 6.6.3 Foamed Plastics 305 6.6.4 Foam Sandwich Structures 306 6.6.4.1 GRP-PVC Foam Sandwich Panels 308 6.7 Deformation Resistance and Component Design 310 6.7.1 On the Measurement of Elastic Modulus 310 6.7.1.1. Review of Elementary Procedures 310 6.7.1.2 Use of Viscoelasticity Data 311 6.7.2 Introduction to Plastics Component Design 314 6.7.2.1 The Pseudoelastic Design Principle 314 6.7.2.2 Factors Affecting Deformation Resistance of Plastics Products 316 6.8 Hardness, Friction, Surface Abrasion and Wear 320 6.8.1 Hardness 320 6.8.1.1 Rubbery Plastics 320 6.8.1.2 Rigid Plastics 321 6.8.2 Other Tribological Properties - Friction, Abrasion and Wear 323 References 327 Chapter 7 Mechanical Properties II - Failure 331 7.1 Mechanical Failure in Plastics - An Introduction 331 7.2 Ductile Failure 334 7.2.1 Definition and Scale of Yielding 334 7.2.2 Specification of Ductile Failure in Plastics 335 7.2.2.1 Yield Criteria 336 7.2.2.2 Some Influences on Yield Behaviour and Ductile Failure 337 7.2.2.3 Choosing an Appropriate Test Method 338 Table of Contents XIX 7.3 Brittle Failure 340 7.3.1 The Importance of Defects in Brittle Failure 341 7.3.2 Brittle Fracture in Solid Plastics 342 7.3.2.1 Early Fracture Theories 342 7.3.2.2 Energy Balance Approach 343 7.3.2.3 Stress Intensity Approach 344 7.3.2.4 Crack-Opening Displacement 345 7.3.2.5 Time-Dependent Crack Growth 346 7.3.3 Using LEFM for Plastics - Some Special Considerations . . 347 7.3.3.1 The Plastic Zone 348 7.3.3.2 Plane Strain Fracture 349 7.3.3.3 The J-Method 351 7.3.3.4 Influences on Fracture Parameters of Polymers . . 351 7.3.3.5 Test Methods 352 7.3.4 Examples of Fracture Mechanics Applied to Plastics Products 353 7.3.4.1 PVC-Pressure Pipe - BS 3505 353 7.3.4.2 Fracture of Impact Modified PVC Profiles .... 355 7.4 Failure of Plastics Composites 357 7.4.1 Continuous Fibre-Reinforced Plastics Composites 357 7.4.2 Short-Fibre Reinforced Plastics Composites 359 7.5 Some Specific Modes of Failure in Plastics 363 7.5.1 Creep Rupture 363 7.5.1.1 Prediction of Creep Rupture Failure 363 7.5.1.2 Creep Rupture Resistance at Elevated Temperature 366 7.5.2 Impact Properties 366 7.5.2.1 Test Methods and Principles 367 7.5.2.2 Fracture Mechanics Approach to Impact Failure . . 373 7.5.3 Dynamic Fatigue Characteristics 375 7.5.3.1 Analysis of Fatigue by Fracture Mechanics .... 376 7.5.3.2 Fatigue Loading and Viscous Heating 378 7.5.3.3 Some Practical Fatigue Studies on Engineering Plastics 378 7.5.4 Environmental Stress Cracking Resistance 378 7.5.4.1 Definition and Mechanism of ESC 379 7.5.4.2 Test Methods and ESC Failure 380 7.5.4.3 Application of Fracture Mechanics to ESC .... 383 7.6 Evaluation and Investigations of Failure Behaviour 384 7.6.1 Introduction and Review of Test Methods 384 7.6.2 Investigations of Failure 385 7.6.3 Factors Inducing Premature Failure 385 7.6.3.1 Materials Factors 385 7.6.3.2 Processing, Fabrication and Design 389 7.6.3.3 Environmental Factors 397 7.6.3.4 Applied Stresses 399 References 400 Chapter 8 Electrical Properties 405 8.1 Introduction 405 8.1.1 Some Electrical Test Methods 405 XX Table of Contents 8.2 Electrical Properties at Low Stress 408 8.2.1 Molecular Origins of Permittivity and Power Factor .... 412 8.2.2 Permittivity and Power Factor of Commercial Polymers 413 8.2.3 Volume Resistivity 414 8.2.4 Surface Resistivity 416 8.3 Electrical Properties at High Stress: Electric Breakdown 417 8.3.1 Thermal Breakdown 417 8.3.2 Gas Discharges 418 8.3.3 Electrical Failure of Plastics 418 8.4 Static Charge 420 8.4.1 Origin and Effects of Electrostatic Charge 420 8.4.2 Measurement of Charge 420 8.5 Electrically Conductive Plastics 422 8.5.1 Electrical Conductivity afforded through Additives 422 8.5.2 Intrinsically Conductive Polymers 425 8.6 Electrical Applications of Plastics 426 8.6.1 Switches, Microswitches and Connectors 426 8.6.2 Insulant for Domestic Wiring 426 8.6.3 Insulant in British Rail Signal System 427 8.6.4 Some Applications for Polyethersulphone (PES) 427 8.6.5 Polyimide Films in Microelectronics 427 References 428 Chapter 9 Opticjjl Properties 431 9.1 Reflection 435 9.2 Refraction 437 9.2.1 Direct Refraction 437 9.2.2 Birefringence 438 9.2.2.1 Definition and Measurement 438 9.2.2.2 Birefringence and Molecular Orientation 441 9.2.2.3 Birefringence and Stress 444 9.3 Light Scattering 447 9.3.1 Light Transmission and Transparency 447 9.3.2 Haze and Clarity 448 9.4 Light Transfer 450 9.4.1 Transmission and Hiding Power 450 9.4.2 Pigmentation and Light Intensity 450 9.5 Absorption of Light 452 9.5.1 Colour Measurement Phenomena 452 9.5.2 Some Problems Associated with Colourants in Plastics . . . 452 9.6 Autofluorescence in Plastics 454 9.6.1 Origin of fluorescence 454 9.6.2 Measurement Principles 454 9.6.3 Application to Plastics 455 References 457 Table of Contents XXI Chapter 10 Other Physical and Environmental Properties 461 10.1 Physical Interactions with Plastics 462 10.1.1 Solubility 462 10.1.1.1 Some General Concepts 462 10.1.1.2 Dual Sorption Model 463 10.1.2 Barrier Properties: Sorption, Diffusion and Permeation . . . 464 10.1.2.1 The Physics of Mass Transport 465 10.1.2.2 Application to Plastics Barrier Materials 466 10.1.2.3 Some Implications for Plastics Products 470 10.1.2.4 Factors Affecting Permeation Resistance of Plastics 472 10.1.2.5 Multi-Layer Packages 474 10.2 Chemical Degradation of Plastics 477 10.2.1 Direct Reaction with Oxygen 477 10.2.1.1 Oxidation of Polyolefins 478 10.2.2 Photochemical Reactions 479 10.2.2.1 Thermal, Thermo-oxidative and Photodegradation of PVC 480 10.2.3 Hydrolysis 485 10.2.4 Biodegradation 486 10.3 General Chemical Resistance 488 10.3.1 Types of Chemical Attack 488 10.3.2 Test Methodology 490 10.3.3 Chemical Resistance of some Commercial Plastics 490 10.4 Blistering of GRP Laminates 493 10.4.1 Introduction 493 10.4.2 Origin and Nature of Delamination 493 10.4.3 Influence of the Resin Specification 496 10.4.4 Isomerisation of Maleate to Fumarate 497 10.4.5 Living with Blisters 498 10.5 Flammability and Fire Properties of Plastics 499 10.5.1 Fire Test Methods 499 10.5.2 Improving Resistance to Flammability 502 10.5.3 General Fire Properties of Some Plastics 503 10.5.4 Halogen Content and PVC 504 References 506 Subject Index 511 Kunststoffverarbeitung; Kunststoff ; Physikalische Eigenschaft, Technische Chemie, Lebensmitteltechnologie, Textiltechnik und andere Technologien, Physik, Astronomie, gebraucht; gut.
8
3446162747 - Birley, Arthur W., Barry Haworth and Jim Batchelor: Physics of plastics: processing, properties, materials engineering.
Birley, Arthur W., Barry Haworth and Jim Batchelor

Physics of plastics: processing, properties, materials engineering. (1992)

Lieferung erfolgt aus/von: Deutschland DE

ISBN: 3446162747 bzw. 9783446162747, in Deutsch, Hanser; Oxford Univ. Press.

59,95
unverbindlich
Lieferung aus: Deutschland, zzgl. Versandkosten.
Von Händler/Antiquariat, Petra Gros, 56068 Koblenz.
528 S. Broschiert Das hier angebotene Buch stammt aus einer teilaufgelösten wissenschaftlichen Bibliothek und trägt die entsprechenden Kennzeichnungen (Rückenschild, Instituts-Stempel...). Buchschnitt und Seitenränder alters-/papierbedingt etwas angebräunt; Einbandkanten leicht bestossen; Der Buchzustand ist ansonsten ordentlich und dem Alter entsprechend gut. Table of Contents Chapter 1 Introduction 1 1.1 The Nature of Plastics 1 1.2 Basic Concepts of Polymer Science 3 1.2.1 Nomenclature 3 1.2.2 Polymers and Polymerization 4 1.2.3 Chain Length, Molecular Weight (MW) and MW Distribution 6 1.2.4 Molecular Structure and Physical Properties 6 1.2.5 The Glass Transition Temperature 8 1.2.6 Crystallinity and Crystalline Melting Point 9 1.2.6.1 Crystalline Superstructure 11 1.2.7 Branched Polymers and Network Structures 12 1.3 The Characterization of Polymers 15 1.3.1 Determination of Chain Structure 15 1.3.1.1 Pyrolysis of Polymers 15 1.3.1.2 Infra-red Spectroscopy 15 1.3.1.3 Nuclear Magnetic Resonance Spectroscopy (NMR) . 16 1.3.2 Determination of Chain Length 16 1.3.3 Chain Length Distribution (Molecular Weight Distribution MWD) 17 1.3.4 Determination of T 19 g 1.3.5 Determination of Crystallinity 19 1.3.6 Melting Temperature and Crystallization Temperature ... 20 1.3.7 Rate of Crystallization 21 1.3.7.1 Heterogeneous Nucleation 22 1.3.8 Polymer Texture 22 1.3.9 Orientation 24 1.4 Product Characterization: Preliminary Comments 25 1.4.1 From Polymer to Plastics Compound 25 1.4.2 Polymer-Polymer Miscibility 27 1.4.3 The Analysis of Plastics Compounds 27 1.4.4 The Effect of Processing on Product Performance 29 1.4.4.1 Processing under Optimum Conditions 29 1.4.4.2 Product Faults arising from Non-optimum Processing 31 1.4.5 Product Characterization and Service Behaviour 32 1.4.6 Products based on Cross-linked Plastics 33 References 34 Chapter 2 Thermal Properties 37 2.1 Introduction 37 2.2 Enthalpy: The Relationship between Heat Energy and Temperature . 38 2.2.1 Supercooling in Semi-Crystalline Plastics 38 2.2.2 Amorphous Plastics: The Effect of T 42 g http://d-nb.info/910463379XIV Table of Contents 2.3 Melting and Crystallization 43 2.3.1 Effect of Molecular Weight on Melting Temperature .... 43 2.3.2 Effect of Branching and Copolymerisation on Melting Point . 43 2.3.3 Effect of Polymer-Polymer Blending on Melting Point ... 44 2.3.4 Effect of Nucleating Agents on Crystallization Temperature . 45 2.3.5 Effect of Cooling Rate on Crystallizing and Fusion Tempera­ tures 46 2.3.6 Effect of Pressure on Melting and Crystallization Temperatures 46 2.3.7 Orientation and Crystallinity 47 2.4 Thermal Conductivity 48 2.4.1 Thermal Diffusivity 48 2.4.2 Effect of Crystallinity on Thermal Conductivity 49 2.4.3 Effect of Fillers on Thermal Conductivity 50 2.4.4 Effect of Orientation on Thermal Conductivity 50 2.4.5 Effect of Pressure on Thermal Conductivity 51 2.4.6 Heating a Plastics Product 51 2.4.7 Cooling a Blow Moulding of Appreciable Thickness .... 51 2.4.8 Liquid Carbon Dioxide as an Internal Coolant 53 2.5 Thermal Expansion and Contraction 55 2.5.1 Factors Affecting Thermal Expansion: Crystallinity .... 55 2.5.2 Factors Affecting Thermal Expansion: Cross-linking .... 56 2.5.3 Factors Affecting Thermal Expansion: Fillers 56 2.5.4 Factors Affecting Thermal Expansion: Orientation 57 References 57 Chapter 3 Melt Flow Properties 59 3.1 Introduction 59 3.2 Fundamental Concepts of Rheology 59 3.3 Geometry of Flow 60 3.3.1 Simple Shear 60 3.3.2 Elongational Flow 61 3.3.3 Bulk Deformation 61 3.4 Rheological Behaviour in Simple Shear 62 3.4.1 Viscous Behaviour in Simple Shear 63 3.5 Viscous Properties of Plastic Melts in Simple Shear 65 3.5.1 General Characteristics 65 3.5.2 Empirical Representation of Experimental Data 66 3.6 Measurement of Shear Properties 68 3.6.1 Cone and Plate 68 3.6.2 Concentric Cylinder 70 3.6.3 Capillary (Extrusion) Viscometer 71 3.6.3.1 Analysis of Experimental Results from Capillary Flow Measurements 73 3.6.3.2 Types of Capillary Viscometer 75 3.7 Factors Affecting Shear Flow 76 3.7.1 Temperature 76 3.7.2 Pressure 77 3.7.3 Effect of Molecular Structure 77 Table of Contents XV 3.8 Elongational Flow 80 3.8.1 Methods of Measurement 80 3.8.2 Types of Elongation Viscometer 81 3.9 Factors Affecting Elongational Viscosity 84 3.9.1 Elongation Rate 84 3.9.2 Molecular Parameters 84 3.9.3 Temperature 85 3.10 Melt Elasticity 86 3.10.1 Stress Relaxation 86 3.10.2 Stress Growth 86 3.10.3 Elastic Recovery 86 3.10.4 Die Swell 87 3.10.5 Melt Fracture 89 References 90 Chapter 4 Processing I - Continuous Methods 93 4.1 Introduction 93 4.1.1 Melting 94 4.1.2 Shaping 94 4.1.3 Shape Stabilization 95 4.2 Extrusion Processes 96 4.2.1 Machine and Material Requirements - An Overview .... 97 4.2.2 Extruder Hardware and Machine Component Functions . . 98 4.2.2.1 Machine Components 98 4.2.2.2 Machine Specification 100 4.2.3 Plastics Flow Analysis in the Screw Extruder 101 4.2.3.1 Single Screw Extrusion 101 4.2.3.2 Twin Screw Extrusion 108 4.2.3.3 Extrusion Dies and Effects of Die Restriction . . . 113 4.2.4 Plastics Materials in Extrusion: Melting, Mixing and Shaping 120 4.2.4.1 Melting Mechanisms 121 4.2.4.2 Mixing Characteristics 122 4.2.4.3 Extrusion Materials and Shaping Variables .... 127 4.2.5 Downstream Extrusion Processing - Cooling, Shape Stabiliza­ tion and Development of Orientation and Microstructure . . 130 4.2.5.1 Heat Transfer During Extrudate Cooling 130 4.2.5.2 Pipe Extrusion 132 4.2.5.3 Profile Extrusion 133 4.2.5.4 Sheet, Flat Film and Coated Laminates 134 4.2.5.5 Wire Covering 134 4.2.5.6 Co-Extrusion and Multi-Layer Products 135 4.2.5.7 Oriented Extrusion Products 135 4.2.6 Some Common Faults and Structural Defects in Extruded Products 137 4.2.6.1 Shaping Phase 137 4.2.6.2 Cooling Phase 140 XVI Table of Contents 4.3 Calendering of Plastics 141 4.3.1 Process Description 141 4.3.2 Polymers, Melt Properties and Calendered Products .... 143 4.3.3 Operation and Analysis of Calenders 144 4.3.3.1 Flow and Pressure Generation at a Calender Nip . 145 4.3.3.2 Influence of Pseudoplasticity 148 4.3.3.3 Roll-Separation Forces and Methods of Compensation 149 4.3.4 Machine and Formulation Variables 150 4.3.5 Some Defects in Calendered Products 153 4.3.5.1 Uneven Thickness Distribution 153 4.3.5.2 Surface Blemishes and Defects 154 4.3.5.3 Post-Fabrication Shrinkage 155 4.4 Pultrusion 156 4.4.1 Description of the Process 156 4.4.2 Analysis of the Process 157 4.4.3 General Comments 158 References 159 Chapter 5 Processing II - Moulding Techniques 163 5.1 Introduction 163 5.2 Injection Moulding 164 5.2.1 Machine Description and Principles of Operation 165 5.2.1.1 The Operating Cycle 165 5.2.1.2 The Functions of Some Machine Components . . . 166 5.2.2 Thermal Requirements for Feedstock Melting 170 5.2.3 Injection Moulds; Factors Affecting Mould Design 172 5.2.3.1 General Functions of Injection Moulds 172 5.2.3.2 Constituent Parts and Types of Mould 173 5.2.3.3 The Mould Feed System (Flow Channels) 175 5.2.3.4 Mould Temperature for Thermoplastics and Thermosets 181 5.2.4 Melt Properties and Injection Mould Filling 181 5.2.4.1 Pressure Drop Calculations for Isothermal Flow . . 182 5.2.4.2 Pressure Drop Calculations for Non-Isothermal Flow 184 5.2.4.3 Computer-Aided Mould Design 187 5.2.5 Moulding Cycle and Machine Control 190 5.2.6 Some Structural Features of Injection Moulded Plastics . . . 194 5.2.6.1 General Microstructure of Semi- Crystalline Plastics 195 5.2.6.2 Orientation 196 5.2.6.3 Residual Stress 198 5.2.6.4 Weld-Line Formation 200 5.2.6.5 Shrinkage and Distortion 201 5.3 Blow Moulding 202 5.3.1 Techniques for Blow Moulding Plastics Products 202 5.3.1.1 Extrusion Blow Moulding (EBM) 203 5.3.1.2 Injection Blow Moulding (IBM) 204 5.3.1.3 Stretch Blow Moulding (SBM) 205 5.3.2 Extrusion Blow Moulding - Materials and Melt Processing . 207 Table of Contents XVII 5.3.3 Some Technological Aspects of Stretch Blow Moulding . . . 212 5.3.4 Blow Moulding and Microstructure 215 5.4 Rotational Moulding 219 5.4.1 Production Techniques and Machine Cycle 219 5.4.2 Material Specification 221 5.4.3 Heating and Melt Flow in Rotational Moulding 222 5.4.3.1 Mould Heating and Melt Plasticisation 222 5.4.3.2 Melt Flow in Rotational Moulds 223 5.4.4 Notes on Microstructure of Rotational Mouldings 223 5.5 Thermoforming Processes 226 5.5.1 Summary of Thermoforming Production Methods 227 5.5.2 Thermoforming Materials and Product Applications .... 229 5.5.3 Analysis of Sheet Heating 230 5.5.4 Stretching and Product Thickness Distribution 232 5.5.5 Orientation and Heat-reversion 235 5.6 Processing Methods for Fibre-Reinforced Plastics 237 5.6.1 Hand-lay, or Contact Moulding 238 5.6.2 Spray Moulding 239 5.6.3 Cold Press Moulding 239 5.6.4 Hot Press Moulding 239 5.6.4.1 Thermoset Moulding Compounds 240 5.6.4.2 Microwave Heating of Sheet Moulding Compound . 241 5.6.5 Resin Transfer Moulding 242 5.6.6 Prepreg Moulding 243 5.6.7 Filament Winding 243 References 244 Chapter 6 Mechanical Properties I - Deformation 251 6.1 Introduction 251 6.2 Deformation of Plastics Materials - Introduction 253 6.3 Temperature and Deformation 256 6.3.1 Role of Primary and Secondary Bonding 256 6.3.2 Transitions and Relaxation Temperatures 256 6.3.3 Effect on Stress-Strain Relationships 258 6.4 Time Dependence and Viscoelasticity in Solid Plastics 260 6.4.1 Deformation and Loading Rate 261 6.4.2 Deformation under Constant Load - Creep 262 6.4.2.1 Creep Deformation - The Voigt-Kelvin Model . . . 262 6.4.2.2 Creep Data - Measurement and Presentation . . . 265 6.4.3 Stress Relaxation (Constant Strain) 268 6.4.3.1 Stress Relaxation - The Maxwell Model 268 6.4.3.2 Stress Relaxation Data - Measurement and Presenta­ tion 270 6.4.4 More Complex Models - The Standard Linear Solid .... 271 6.4.5 Superposition: Successive/Intermittent Loads and Recovery . 272 6.4.6 Dynamic Mechanical Properties 275 6.4.6.1 The Basis of Dynamic Mechanical Testing .... 275 6.4.6.2 Test Techniques 277 XVIII Table of Contents 6.5 Yielding of Plastics 282 6.5.1 Aspects of the Yield Process under Tensile Stress 282 6.5.1.1 Load-Extension Data 282 6.5.1.2 True Stress-Strain Data - The Considere Construction 284 6.5.1.3 Adiabatic Heating During Yield 286 6.5.2 Crazing and Shear Yielding 286 6.5.2.1 Formation and Structure of Crazes 286 6.5.2.2 Toughness Enhancement by Multiple Yielding . . . 289 6.5.3 Yielding in Semi-Crystalline Polymers 290 6.6 Property Enhancement by Orientation, Reinforcement and Foaming 292 6.6.1 Molecular Orientation 292 6.6.2 Heterogeneous Reinforcement 294 6.6.2.1 Composite Materials 294 6.6.2.2 Fibre Reinforcement and Deformation 295 6.6.2.3 Stiffness of Continuous Fibre Reinforced Composites 296 6.6.2.4 Mechanism of Fibre Reinforcement 302 6.6.2.5 Particulate-Reinforced Composites 304 6.6.3 Foamed Plastics 305 6.6.4 Foam Sandwich Structures 306 6.6.4.1 GRP-PVC Foam Sandwich Panels 308 6.7 Deformation Resistance and Component Design 310 6.7.1 On the Measurement of Elastic Modulus 310 6.7.1.1. Review of Elementary Procedures 310 6.7.1.2 Use of Viscoelasticity Data 311 6.7.2 Introduction to Plastics Component Design 314 6.7.2.1 The Pseudoelastic Design Principle 314 6.7.2.2 Factors Affecting Deformation Resistance of Plastics Products 316 6.8 Hardness, Friction, Surface Abrasion and Wear 320 6.8.1 Hardness 320 6.8.1.1 Rubbery Plastics 320 6.8.1.2 Rigid Plastics 321 6.8.2 Other Tribological Properties - Friction, Abrasion and Wear 323 References 327 Chapter 7 Mechanical Properties II - Failure 331 7.1 Mechanical Failure in Plastics - An Introduction 331 7.2 Ductile Failure 334 7.2.1 Definition and Scale of Yielding 334 7.2.2 Specification of Ductile Failure in Plastics 335 7.2.2.1 Yield Criteria 336 7.2.2.2 Some Influences on Yield Behaviour and Ductile Failure 337 7.2.2.3 Choosing an Appropriate Test Method 338 Table of Contents XIX 7.3 Brittle Failure 340 7.3.1 The Importance of Defects in Brittle Failure 341 7.3.2 Brittle Fracture in Solid Plastics 342 7.3.2.1 Early Fracture Theories 342 7.3.2.2 Energy Balance Approach 343 7.3.2.3 Stress Intensity Approach 344 7.3.2.4 Crack-Opening Displacement 345 7.3.2.5 Time-Dependent Crack Growth 346 7.3.3 Using LEFM for Plastics - Some Special Considerations . . 347 7.3.3.1 The Plastic Zone 348 7.3.3.2 Plane Strain Fracture 349 7.3.3.3 The J-Method 351 7.3.3.4 Influences on Fracture Parameters of Polymers . . 351 7.3.3.5 Test Methods 352 7.3.4 Examples of Fracture Mechanics Applied to Plastics Products 353 7.3.4.1 PVC-Pressure Pipe - BS 3505 353 7.3.4.2 Fracture of Impact Modified PVC Profiles .... 355 7.4 Failure of Plastics Composites 357 7.4.1 Continuous Fibre-Reinforced Plastics Composites 357 7.4.2 Short-Fibre Reinforced Plastics Composites 359 7.5 Some Specific Modes of Failure in Plastics 363 7.5.1 Creep Rupture 363 7.5.1.1 Prediction of Creep Rupture Failure 363 7.5.1.2 Creep Rupture Resistance at Elevated Temperature 366 7.5.2 Impact Properties 366 7.5.2.1 Test Methods and Principles 367 7.5.2.2 Fracture Mechanics Approach to Impact Failure . . 373 7.5.3 Dynamic Fatigue Characteristics 375 7.5.3.1 Analysis of Fatigue by Fracture Mechanics .... 376 7.5.3.2 Fatigue Loading and Viscous Heating 378 7.5.3.3 Some Practical Fatigue Studies on Engineering Plastics 378 7.5.4 Environmental Stress Cracking Resistance 378 7.5.4.1 Definition and Mechanism of ESC 379 7.5.4.2 Test Methods and ESC Failure 380 7.5.4.3 Application of Fracture Mechanics to ESC .... 383 7.6 Evaluation and Investigations of Failure Behaviour 384 7.6.1 Introduction and Review of Test Methods 384 7.6.2 Investigations of Failure 385 7.6.3 Factors Inducing Premature Failure 385 7.6.3.1 Materials Factors 385 7.6.3.2 Processing, Fabrication and Design 389 7.6.3.3 Environmental Factors 397 7.6.3.4 Applied Stresses 399 References 400 Chapter 8 Electrical Properties 405 8.1 Introduction 405 8.1.1 Some Electrical Test Methods 405 XX Table of Contents 8.2 Electrical Properties at Low Stress 408 8.2.1 Molecular Origins of Permittivity and Power Factor .... 412 8.2.2 Permittivity and Power Factor of Commercial Polymers 413 8.2.3 Volume Resistivity 414 8.2.4 Surface Resistivity 416 8.3 Electrical Properties at High Stress: Electric Breakdown 417 8.3.1 Thermal Breakdown 417 8.3.2 Gas Discharges 418 8.3.3 Electrical Failure of Plastics 418 8.4 Static Charge 420 8.4.1 Origin and Effects of Electrostatic Charge 420 8.4.2 Measurement of Charge 420 8.5 Electrically Conductive Plastics 422 8.5.1 Electrical Conductivity afforded through Additives 422 8.5.2 Intrinsically Conductive Polymers 425 8.6 Electrical Applications of Plastics 426 8.6.1 Switches, Microswitches and Connectors 426 8.6.2 Insulant for Domestic Wiring 426 8.6.3 Insulant in British Rail Signal System 427 8.6.4 Some Applications for Polyethersulphone (PES) 427 8.6.5 Polyimide Films in Microelectronics 427 References 428 Chapter 9 Opticjjl Properties 431 9.1 Reflection 435 9.2 Refraction 437 9.2.1 Direct Refraction 437 9.2.2 Birefringence 438 9.2.2.1 Definition and Measurement 438 9.2.2.2 Birefringence and Molecular Orientation 441 9.2.2.3 Birefringence and Stress 444 9.3 Light Scattering 447 9.3.1 Light Transmission and Transparency 447 9.3.2 Haze and Clarity 448 9.4 Light Transfer 450 9.4.1 Transmission and Hiding Power 450 9.4.2 Pigmentation and Light Intensity 450 9.5 Absorption of Light 452 9.5.1 Colour Measurement Phenomena 452 9.5.2 Some Problems Associated with Colourants in Plastics . . . 452 9.6 Autofluorescence in Plastics 454 9.6.1 Origin of fluorescence 454 9.6.2 Measurement Principles 454 9.6.3 Application to Plastics 455 References 457 Table of Contents XXI Chapter 10 Other Physical and Environmental Properties 461 10.1 Physical Interactions with Plastics 462 10.1.1 Solubility 462 10.1.1.1 Some General Concepts 462 10.1.1.2 Dual Sorption Model 463 10.1.2 Barrier Properties: Sorption, Diffusion and Permeation . . . 464 10.1.2.1 The Physics of Mass Transport 465 10.1.2.2 Application to Plastics Barrier Materials 466 10.1.2.3 Some Implications for Plastics Products 470 10.1.2.4 Factors Affecting Permeation Resistance of Plastics 472 10.1.2.5 Multi-Layer Packages 474 10.2 Chemical Degradation of Plastics 477 10.2.1 Direct Reaction with Oxygen 477 10.2.1.1 Oxidation of Polyolefins 478 10.2.2 Photochemical Reactions 479 10.2.2.1 Thermal, Thermo-oxidative and Photodegradation of PVC 480 10.2.3 Hydrolysis 485 10.2.4 Biodegradation 486 10.3 General Chemical Resistance 488 10.3.1 Types of Chemical Attack 488 10.3.2 Test Methodology 490 10.3.3 Chemical Resistance of some Commercial Plastics 490 10.4 Blistering of GRP Laminates 493 10.4.1 Introduction 493 10.4.2 Origin and Nature of Delamination 493 10.4.3 Influence of the Resin Specification 496 10.4.4 Isomerisation of Maleate to Fumarate 497 10.4.5 Living with Blisters 498 10.5 Flammability and Fire Properties of Plastics 499 10.5.1 Fire Test Methods 499 10.5.2 Improving Resistance to Flammability 502 10.5.3 General Fire Properties of Some Plastics 503 10.5.4 Halogen Content and PVC 504 References 506 Subject Index 511 Versand D: 2,95 EUR Kunststoffverarbeitung; Kunststoff ; Physikalische Eigenschaft, Technische Chemie, Lebensmitteltechnologie, Textiltechnik und andere Technologien, Physik, Astronomie.
9
3446162747 - Birley, Arthur W., Barry Haworth and Jim Batchelor: Physics of plastics: processing, properties, materials engineering.
Birley, Arthur W., Barry Haworth and Jim Batchelor

Physics of plastics: processing, properties, materials engineering. (1992)

Lieferung erfolgt aus/von: Deutschland DE

ISBN: 3446162747 bzw. 9783446162747, Band: 3, in Deutsch, Hanser; Oxford Univ. Press.

59,95 + Versand: 2,95 = 62,90
unverbindlich
Lieferung aus: Deutschland, Versandkosten in die BRD.
Von Händler/Antiquariat, Petra Gros, 56070 Koblenz.
528 S. Broschiert Das hier angebotene Buch stammt aus einer teilaufgelösten wissenschaftlichen Bibliothek und trägt die entsprechenden Kennzeichnungen (Rückenschild, Instituts-Stempel...). Buchschnitt und Seitenränder alters-/papierbedingt etwas angebräunt; Einbandkanten leicht bestossen; Der Buchzustand ist ansonsten ordentlich und dem Alter entsprechend gut. Table of Contents Chapter 1 Introduction 1 1.1 The Nature of Plastics 1 1.2 Basic Concepts of Polymer Science 3 1.2.1 Nomenclature 3 1.2.2 Polymers and Polymerization 4 1.2.3 Chain Length, Molecular Weight (MW) and MW Distribution 6 1.2.4 Molecular Structure and Physical Properties 6 1.2.5 The Glass Transition Temperature 8 1.2.6 Crystallinity and Crystalline Melting Point 9 1.2.6.1 Crystalline Superstructure 11 1.2.7 Branched Polymers and Network Structures 12 1.3 The Characterization of Polymers 15 1.3.1 Determination of Chain Structure 15 1.3.1.1 Pyrolysis of Polymers 15 1.3.1.2 Infra-red Spectroscopy 15 1.3.1.3 Nuclear Magnetic Resonance Spectroscopy (NMR) . 16 1.3.2 Determination of Chain Length 16 1.3.3 Chain Length Distribution (Molecular Weight Distribution MWD) 17 1.3.4 Determination of T 19 g 1.3.5 Determination of Crystallinity 19 1.3.6 Melting Temperature and Crystallization Temperature ... 20 1.3.7 Rate of Crystallization 21 1.3.7.1 Heterogeneous Nucleation 22 1.3.8 Polymer Texture 22 1.3.9 Orientation 24 1.4 Product Characterization: Preliminary Comments 25 1.4.1 From Polymer to Plastics Compound 25 1.4.2 Polymer-Polymer Miscibility 27 1.4.3 The Analysis of Plastics Compounds 27 1.4.4 The Effect of Processing on Product Performance 29 1.4.4.1 Processing under Optimum Conditions 29 1.4.4.2 Product Faults arising from Non-optimum Processing 31 1.4.5 Product Characterization and Service Behaviour 32 1.4.6 Products based on Cross-linked Plastics 33 References 34 Chapter 2 Thermal Properties 37 2.1 Introduction 37 2.2 Enthalpy: The Relationship between Heat Energy and Temperature . 38 2.2.1 Supercooling in Semi-Crystalline Plastics 38 2.2.2 Amorphous Plastics: The Effect of T 42 g http://d-nb.info/910463379XIV Table of Contents 2.3 Melting and Crystallization 43 2.3.1 Effect of Molecular Weight on Melting Temperature .... 43 2.3.2 Effect of Branching and Copolymerisation on Melting Point . 43 2.3.3 Effect of Polymer-Polymer Blending on Melting Point ... 44 2.3.4 Effect of Nucleating Agents on Crystallization Temperature . 45 2.3.5 Effect of Cooling Rate on Crystallizing and Fusion Tempera­ tures 46 2.3.6 Effect of Pressure on Melting and Crystallization Temperatures 46 2.3.7 Orientation and Crystallinity 47 2.4 Thermal Conductivity 48 2.4.1 Thermal Diffusivity 48 2.4.2 Effect of Crystallinity on Thermal Conductivity 49 2.4.3 Effect of Fillers on Thermal Conductivity 50 2.4.4 Effect of Orientation on Thermal Conductivity 50 2.4.5 Effect of Pressure on Thermal Conductivity 51 2.4.6 Heating a Plastics Product 51 2.4.7 Cooling a Blow Moulding of Appreciable Thickness .... 51 2.4.8 Liquid Carbon Dioxide as an Internal Coolant 53 2.5 Thermal Expansion and Contraction 55 2.5.1 Factors Affecting Thermal Expansion: Crystallinity .... 55 2.5.2 Factors Affecting Thermal Expansion: Cross-linking .... 56 2.5.3 Factors Affecting Thermal Expansion: Fillers 56 2.5.4 Factors Affecting Thermal Expansion: Orientation 57 References 57 Chapter 3 Melt Flow Properties 59 3.1 Introduction 59 3.2 Fundamental Concepts of Rheology 59 3.3 Geometry of Flow 60 3.3.1 Simple Shear 60 3.3.2 Elongational Flow 61 3.3.3 Bulk Deformation 61 3.4 Rheological Behaviour in Simple Shear 62 3.4.1 Viscous Behaviour in Simple Shear 63 3.5 Viscous Properties of Plastic Melts in Simple Shear 65 3.5.1 General Characteristics 65 3.5.2 Empirical Representation of Experimental Data 66 3.6 Measurement of Shear Properties 68 3.6.1 Cone and Plate 68 3.6.2 Concentric Cylinder 70 3.6.3 Capillary (Extrusion) Viscometer 71 3.6.3.1 Analysis of Experimental Results from Capillary Flow Measurements 73 3.6.3.2 Types of Capillary Viscometer 75 3.7 Factors Affecting Shear Flow 76 3.7.1 Temperature 76 3.7.2 Pressure 77 3.7.3 Effect of Molecular Structure 77 Table of Contents XV 3.8 Elongational Flow 80 3.8.1 Methods of Measurement 80 3.8.2 Types of Elongation Viscometer 81 3.9 Factors Affecting Elongational Viscosity 84 3.9.1 Elongation Rate 84 3.9.2 Molecular Parameters 84 3.9.3 Temperature 85 3.10 Melt Elasticity 86 3.10.1 Stress Relaxation 86 3.10.2 Stress Growth 86 3.10.3 Elastic Recovery 86 3.10.4 Die Swell 87 3.10.5 Melt Fracture 89 References 90 Chapter 4 Processing I - Continuous Methods 93 4.1 Introduction 93 4.1.1 Melting 94 4.1.2 Shaping 94 4.1.3 Shape Stabilization 95 4.2 Extrusion Processes 96 4.2.1 Machine and Material Requirements - An Overview .... 97 4.2.2 Extruder Hardware and Machine Component Functions . . 98 4.2.2.1 Machine Components 98 4.2.2.2 Machine Specification 100 4.2.3 Plastics Flow Analysis in the Screw Extruder 101 4.2.3.1 Single Screw Extrusion 101 4.2.3.2 Twin Screw Extrusion 108 4.2.3.3 Extrusion Dies and Effects of Die Restriction . . . 113 4.2.4 Plastics Materials in Extrusion: Melting, Mixing and Shaping 120 4.2.4.1 Melting Mechanisms 121 4.2.4.2 Mixing Characteristics 122 4.2.4.3 Extrusion Materials and Shaping Variables .... 127 4.2.5 Downstream Extrusion Processing - Cooling, Shape Stabiliza­ tion and Development of Orientation and Microstructure . . 130 4.2.5.1 Heat Transfer During Extrudate Cooling 130 4.2.5.2 Pipe Extrusion 132 4.2.5.3 Profile Extrusion 133 4.2.5.4 Sheet, Flat Film and Coated Laminates 134 4.2.5.5 Wire Covering 134 4.2.5.6 Co-Extrusion and Multi-Layer Products 135 4.2.5.7 Oriented Extrusion Products 135 4.2.6 Some Common Faults and Structural Defects in Extruded Products 137 4.2.6.1 Shaping Phase 137 4.2.6.2 Cooling Phase 140 XVI Table of Contents 4.3 Calendering of Plastics 141 4.3.1 Process Description 141 4.3.2 Polymers, Melt Properties and Calendered Products .... 143 4.3.3 Operation and Analysis of Calenders 144 4.3.3.1 Flow and Pressure Generation at a Calender Nip . 145 4.3.3.2 Influence of Pseudoplasticity 148 4.3.3.3 Roll-Separation Forces and Methods of Compensation 149 4.3.4 Machine and Formulation Variables 150 4.3.5 Some Defects in Calendered Products 153 4.3.5.1 Uneven Thickness Distribution 153 4.3.5.2 Surface Blemishes and Defects 154 4.3.5.3 Post-Fabrication Shrinkage 155 4.4 Pultrusion 156 4.4.1 Description of the Process 156 4.4.2 Analysis of the Process 157 4.4.3 General Comments 158 References 159 Chapter 5 Processing II - Moulding Techniques 163 5.1 Introduction 163 5.2 Injection Moulding 164 5.2.1 Machine Description and Principles of Operation 165 5.2.1.1 The Operating Cycle 165 5.2.1.2 The Functions of Some Machine Components . . . 166 5.2.2 Thermal Requirements for Feedstock Melting 170 5.2.3 Injection Moulds; Factors Affecting Mould Design 172 5.2.3.1 General Functions of Injection Moulds 172 5.2.3.2 Constituent Parts and Types of Mould 173 5.2.3.3 The Mould Feed System (Flow Channels) 175 5.2.3.4 Mould Temperature for Thermoplastics and Thermosets 181 5.2.4 Melt Properties and Injection Mould Filling 181 5.2.4.1 Pressure Drop Calculations for Isothermal Flow . . 182 5.2.4.2 Pressure Drop Calculations for Non-Isothermal Flow 184 5.2.4.3 Computer-Aided Mould Design 187 5.2.5 Moulding Cycle and Machine Control 190 5.2.6 Some Structural Features of Injection Moulded Plastics . . . 194 5.2.6.1 General Microstructure of Semi- Crystalline Plastics 195 5.2.6.2 Orientation 196 5.2.6.3 Residual Stress 198 5.2.6.4 Weld-Line Formation 200 5.2.6.5 Shrinkage and Distortion 201 5.3 Blow Moulding 202 5.3.1 Techniques for Blow Moulding Plastics Products 202 5.3.1.1 Extrusion Blow Moulding (EBM) 203 5.3.1.2 Injection Blow Moulding (IBM) 204 5.3.1.3 Stretch Blow Moulding (SBM) 205 5.3.2 Extrusion Blow Moulding - Materials and Melt Processing . 207 Table of Contents XVII 5.3.3 Some Technological Aspects of Stretch Blow Moulding . . . 212 5.3.4 Blow Moulding and Microstructure 215 5.4 Rotational Moulding 219 5.4.1 Production Techniques and Machine Cycle 219 5.4.2 Material Specification 221 5.4.3 Heating and Melt Flow in Rotational Moulding 222 5.4.3.1 Mould Heating and Melt Plasticisation 222 5.4.3.2 Melt Flow in Rotational Moulds 223 5.4.4 Notes on Microstructure of Rotational Mouldings 223 5.5 Thermoforming Processes 226 5.5.1 Summary of Thermoforming Production Methods 227 5.5.2 Thermoforming Materials and Product Applications .... 229 5.5.3 Analysis of Sheet Heating 230 5.5.4 Stretching and Product Thickness Distribution 232 5.5.5 Orientation and Heat-reversion 235 5.6 Processing Methods for Fibre-Reinforced Plastics 237 5.6.1 Hand-lay, or Contact Moulding 238 5.6.2 Spray Moulding 239 5.6.3 Cold Press Moulding 239 5.6.4 Hot Press Moulding 239 5.6.4.1 Thermoset Moulding Compounds 240 5.6.4.2 Microwave Heating of Sheet Moulding Compound . 241 5.6.5 Resin Transfer Moulding 242 5.6.6 Prepreg Moulding 243 5.6.7 Filament Winding 243 References 244 Chapter 6 Mechanical Properties I - Deformation 251 6.1 Introduction 251 6.2 Deformation of Plastics Materials - Introduction 253 6.3 Temperature and Deformation 256 6.3.1 Role of Primary and Secondary Bonding 256 6.3.2 Transitions and Relaxation Temperatures 256 6.3.3 Effect on Stress-Strain Relationships 258 6.4 Time Dependence and Viscoelasticity in Solid Plastics 260 6.4.1 Deformation and Loading Rate 261 6.4.2 Deformation under Constant Load - Creep 262 6.4.2.1 Creep Deformation - The Voigt-Kelvin Model . . . 262 6.4.2.2 Creep Data - Measurement and Presentation . . . 265 6.4.3 Stress Relaxation (Constant Strain) 268 6.4.3.1 Stress Relaxation - The Maxwell Model 268 6.4.3.2 Stress Relaxation Data - Measurement and Presenta­ tion 270 6.4.4 More Complex Models - The Standard Linear Solid .... 271 6.4.5 Superposition: Successive/Intermittent Loads and Recovery . 272 6.4.6 Dynamic Mechanical Properties 275 6.4.6.1 The Basis of Dynamic Mechanical Testing .... 275 6.4.6.2 Test Techniques 277 XVIII Table of Contents 6.5 Yielding of Plastics 282 6.5.1 Aspects of the Yield Process under Tensile Stress 282 6.5.1.1 Load-Extension Data 282 6.5.1.2 True Stress-Strain Data - The Considere Construction 284 6.5.1.3 Adiabatic Heating During Yield 286 6.5.2 Crazing and Shear Yielding 286 6.5.2.1 Formation and Structure of Crazes 286 6.5.2.2 Toughness Enhancement by Multiple Yielding . . . 289 6.5.3 Yielding in Semi-Crystalline Polymers 290 6.6 Property Enhancement by Orientation, Reinforcement and Foaming 292 6.6.1 Molecular Orientation 292 6.6.2 Heterogeneous Reinforcement 294 6.6.2.1 Composite Materials 294 6.6.2.2 Fibre Reinforcement and Deformation 295 6.6.2.3 Stiffness of Continuous Fibre Reinforced Composites 296 6.6.2.4 Mechanism of Fibre Reinforcement 302 6.6.2.5 Particulate-Reinforced Composites 304 6.6.3 Foamed Plastics 305 6.6.4 Foam Sandwich Structures 306 6.6.4.1 GRP-PVC Foam Sandwich Panels 308 6.7 Deformation Resistance and Component Design 310 6.7.1 On the Measurement of Elastic Modulus 310 6.7.1.1. Review of Elementary Procedures 310 6.7.1.2 Use of Viscoelasticity Data 311 6.7.2 Introduction to Plastics Component Design 314 6.7.2.1 The Pseudoelastic Design Principle 314 6.7.2.2 Factors Affecting Deformation Resistance of Plastics Products 316 6.8 Hardness, Friction, Surface Abrasion and Wear 320 6.8.1 Hardness 320 6.8.1.1 Rubbery Plastics 320 6.8.1.2 Rigid Plastics 321 6.8.2 Other Tribological Properties - Friction, Abrasion and Wear 323 References 327 Chapter 7 Mechanical Properties II - Failure 331 7.1 Mechanical Failure in Plastics - An Introduction 331 7.2 Ductile Failure 334 7.2.1 Definition and Scale of Yielding 334 7.2.2 Specification of Ductile Failure in Plastics 335 7.2.2.1 Yield Criteria 336 7.2.2.2 Some Influences on Yield Behaviour and Ductile Failure 337 7.2.2.3 Choosing an Appropriate Test Method 338 Table of Contents XIX 7.3 Brittle Failure 340 7.3.1 The Importance of Defects in Brittle Failure 341 7.3.2 Brittle Fracture in Solid Plastics 342 7.3.2.1 Early Fracture Theories 342 7.3.2.2 Energy Balance Approach 343 7.3.2.3 Stress Intensity Approach 344 7.3.2.4 Crack-Opening Displacement 345 7.3.2.5 Time-Dependent Crack Growth 346 7.3.3 Using LEFM for Plastics - Some Special Considerations . . 347 7.3.3.1 The Plastic Zone 348 7.3.3.2 Plane Strain Fracture 349 7.3.3.3 The J-Method 351 7.3.3.4 Influences on Fracture Parameters of Polymers . . 351 7.3.3.5 Test Methods 352 7.3.4 Examples of Fracture Mechanics Applied to Plastics Products 353 7.3.4.1 PVC-Pressure Pipe - BS 3505 353 7.3.4.2 Fracture of Impact Modified PVC Profiles .... 355 7.4 Failure of Plastics Composites 357 7.4.1 Continuous Fibre-Reinforced Plastics Composites 357 7.4.2 Short-Fibre Reinforced Plastics Composites 359 7.5 Some Specific Modes of Failure in Plastics 363 7.5.1 Creep Rupture 363 7.5.1.1 Prediction of Creep Rupture Failure 363 7.5.1.2 Creep Rupture Resistance at Elevated Temperature 366 7.5.2 Impact Properties 366 7.5.2.1 Test Methods and Principles 367 7.5.2.2 Fracture Mechanics Approach to Impact Failure . . 373 7.5.3 Dynamic Fatigue Characteristics 375 7.5.3.1 Analysis of Fatigue by Fracture Mechanics .... 376 7.5.3.2 Fatigue Loading and Viscous Heating 378 7.5.3.3 Some Practical Fatigue Studies on Engineering Plastics 378 7.5.4 Environmental Stress Cracking Resistance 378 7.5.4.1 Definition and Mechanism of ESC 379 7.5.4.2 Test Methods and ESC Failure 380 7.5.4.3 Application of Fracture Mechanics to ESC .... 383 7.6 Evaluation and Investigations of Failure Behaviour 384 7.6.1 Introduction and Review of Test Methods 384 7.6.2 Investigations of Failure 385 7.6.3 Factors Inducing Premature Failure 385 7.6.3.1 Materials Factors 385 7.6.3.2 Processing, Fabrication and Design 389 7.6.3.3 Environmental Factors 397 7.6.3.4 Applied Stresses 399 References 400 Chapter 8 Electrical Properties 405 8.1 Introduction 405 8.1.1 Some Electrical Test Methods 405 XX Table of Contents 8.2 Electrical Properties at Low Stress 408 8.2.1 Molecular Origins of Permittivity and Power Factor .... 412 8.2.2 Permittivity and Power Factor of Commercial Polymers 413 8.2.3 Volume Resistivity 414 8.2.4 Surface Resistivity 416 8.3 Electrical Properties at High Stress: Electric Breakdown 417 8.3.1 Thermal Breakdown 417 8.3.2 Gas Discharges 418 8.3.3 Electrical Failure of Plastics 418 8.4 Static Charge 420 8.4.1 Origin and Effects of Electrostatic Charge 420 8.4.2 Measurement of Charge 420 8.5 Electrically Conductive Plastics 422 8.5.1 Electrical Conductivity afforded through Additives 422 8.5.2 Intrinsically Conductive Polymers 425 8.6 Electrical Applications of Plastics 426 8.6.1 Switches, Microswitches and Connectors 426 8.6.2 Insulant for Domestic Wiring 426 8.6.3 Insulant in British Rail Signal System 427 8.6.4 Some Applications for Polyethersulphone (PES) 427 8.6.5 Polyimide Films in Microelectronics 427 References 428 Chapter 9 Opticjjl Properties 431 9.1 Reflection 435 9.2 Refraction 437 9.2.1 Direct Refraction 437 9.2.2 Birefringence 438 9.2.2.1 Definition and Measurement 438 9.2.2.2 Birefringence and Molecular Orientation 441 9.2.2.3 Birefringence and Stress 444 9.3 Light Scattering 447 9.3.1 Light Transmission and Transparency 447 9.3.2 Haze and Clarity 448 9.4 Light Transfer 450 9.4.1 Transmission and Hiding Power 450 9.4.2 Pigmentation and Light Intensity 450 9.5 Absorption of Light 452 9.5.1 Colour Measurement Phenomena 452 9.5.2 Some Problems Associated with Colourants in Plastics . . . 452 9.6 Autofluorescence in Plastics 454 9.6.1 Origin of fluorescence 454 9.6.2 Measurement Principles 454 9.6.3 Application to Plastics 455 References 457 Table of Contents XXI Chapter 10 Other Physical and Environmental Properties 461 10.1 Physical Interactions with Plastics 462 10.1.1 Solubility 462 10.1.1.1 Some General Concepts 462 10.1.1.2 Dual Sorption Model 463 10.1.2 Barrier Properties: Sorption, Diffusion and Permeation . . . 464 10.1.2.1 The Physics of Mass Transport 465 10.1.2.2 Application to Plastics Barrier Materials 466 10.1.2.3 Some Implications for Plastics Products 470 10.1.2.4 Factors Affecting Permeation Resistance of Plastics 472 10.1.2.5 Multi-Layer Packages 474 10.2 Chemical Degradation of Plastics 477 10.2.1 Direct Reaction with Oxygen 477 10.2.1.1 Oxidation of Polyolefins 478 10.2.2 Photochemical Reactions 479 10.2.2.1 Thermal, Thermo-oxidative and Photodegradation of PVC 480 10.2.3 Hydrolysis 485 10.2.4 Biodegradation 486 10.3 General Chemical Resistance 488 10.3.1 Types of Chemical Attack 488 10.3.2 Test Methodology 490 10.3.3 Chemical Resistance of some Commercial Plastics 490 10.4 Blistering of GRP Laminates 493 10.4.1 Introduction 493 10.4.2 Origin and Nature of Delamination 493 10.4.3 Influence of the Resin Specification 496 10.4.4 Isomerisation of Maleate to Fumarate 497 10.4.5 Living with Blisters 498 10.5 Flammability and Fire Properties of Plastics 499 10.5.1 Fire Test Methods 499 10.5.2 Improving Resistance to Flammability 502 10.5.3 General Fire Properties of Some Plastics 503 10.5.4 Halogen Content and PVC 504 References 506 Subject Index 511 Versand D: 2,95 EUR Kunststoffverarbeitung; Kunststoff ; Physikalische Eigenschaft, Technische Chemie, Lebensmitteltechnologie, Textiltechnik und andere Technologien, Physik, Astronomie.
10
Birley, Arthur W (Editor), and Batchelor, Jim (Editor), and Haworth, Barry (Editor)

Physics of Plastics: Processing, Properties Materials Engineering (1992)

Lieferung erfolgt aus/von: Vereinigte Staaten von Amerika EN HC US

ISBN: 9780195207828 bzw. 0195207823, in Englisch, Oxford University Press, USA, gebundenes Buch, gebraucht.

410,85
unverbindlich
Lieferung aus: Vereinigte Staaten von Amerika, zzgl. Versandkosten, Verandgebiet: DOM.
Von Händler/Antiquariat, Marvel Books, CT, Ridgefield, [RE:3].
Hard cover.
Lade…